numerical-collection-cpp 0.10.0
A collection of algorithms in numerical analysis implemented in C++
Loading...
Searching...
No Matches
Bibliography
[1]

A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[2]

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2010.

[3]

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. arXiv, 1012.2599v1:1–49, 2010.

[4]

Lars Eldén. A Weighted Pseudoinverse, Generalized Singular Values, and Constrained Least Squares Problems. BIT Numerical Mathematics, 2:487–502, 1982.

[5]

Etienne Forest and Ronald D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena, 43(1):105–117, 1990.

[6]

Bengt Fornberg and Natasha Flyer. A Primer on Radial Basis Functions with Applications to the Geosciences. Society for Industrial and Applied Mathematics, 2015.

[7]

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 4th edition, 2013.

[8]

Kjell Gustafsson. Control Theoretic Techniques for Stepsize Selection in Explicit Runge-Kutta Methods. ACM Transactions on Mathematical Software, 7(4):533–554, 1991.

[9]

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer-Verlag, 1991.

[10]

E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Springer-Verlag, 1993.

[11]

Per Christian Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems. Numerical Algorithms, 6:1–35, 1994.

[12]

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the lipschitz constant. Journal of Optimization Theory and Application, 79(1), 1993.

[13]

John Bagterp Jorgensen, Morten Rode Kristensen, and Per Grove Thomsen. A Family of ESDIRK Integration Methods. arXiv, 1803.01613v1:1–22, 2018.

[14]

H. Kahan. Further remarks on reducing truncation errors. Communication of the ACM, 8(1):40, 1965.

[15]

Christopher A. Kennedy and Mark H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Applied Numerical Mathematics, 44, 2003.

[16]

Peter Knabner and Lutz Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer-Verlag, 2003.

[17]

Koichi Kubota and Masao Iri. Automatic Differentiation of Algorithms and Applications. Corona Publishing Co. Ltd., 1998.

[18]

D. P. Laurie. Calculation of gauss-kronrod quadrature rules. Mathematics of Computation, 66(219):1133 – 1145, 1997.

[19]

Paolo Novati. Some secant approximations for Rosenbrock W-methods. Applied Numerical Mathematics, 58:195–211, 2008.

[20]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes : The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[21]

G. R. W. Quispel and D. I. McLaren. A new class of energy-preserving numerical integration methods. Journal of Physics A: Mathematical and Theoretical, 41, 2008.

[22]

J. Rang and L. Angermann. New rosenbrock w-methods of order 3 for partial differential algebraic equations of index 1. BIT Numerical Mathematics, 45:761 – 787, 2005.

[23]

Joachim Rang. Improved traditional Rosenbrock-Wanner methods for stiff ODEs and DAEs. Journal of Computational and Applied Mathematics, 286, 2015.

[24]

J. W. Ruge and K. Stüben. 4. Algebraic Multigrid, chapter 4, pages 73–130. Society for Industrial and Applied Mathematics, 1987.

[25]

Michael Scheuerer. An alternative procedure for selecting a good value for the parameter c in RBF-interpolation. Advances in Computational Mathematics, 34:105–126, 2011.

[26]

Yaroslav D. Sergeyev. Efficient strategy for adaptive partition of n-dimensional internals in the framework of diagonal algorithms. Journal of Optimization Theory and Applications, 107(1):145 – 168, 2000.

[27]

Yaroslav D. Sergeyev. Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM Journal on Optimization, 16(3):910 – 937, 2006.

[28]

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process Optimization in the Bandit Settings: No Regret and Experimental Design. arXiv, 0912.3995v4:1–17, 2010.

[29]

Gerd Steineback. RODASP, MATLAB Central File Exchange, 2022. Acquired from https://www.mathworks.com/matlabcentral/fileexchange/10354-rodasp at August 7, 2022.

[30]

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4:389–396, 1995.