53template <concepts::
objective_function ObjectiveFunction>
62template <concepts::multi_variate_
objective_function ObjectiveFunction>
79 using value_type =
typename objective_function_type::value_type;
90 const ObjectiveFunction& obj_fun = ObjectiveFunction())
110 "Lower and upper limits must have the same size.");
116 opt_value_ = std::numeric_limits<value_type>::max();
125 std::generate(variable.begin(), variable.end(), [
this]() {
126 return initial_distribution_(random_number_generator_);
134 [
this](
const auto& variable) { return evaluate_on(variable); });
154 if (brighter_value >= moved_value) {
159 brighter_variable - moved_variable;
161 diff.cwiseQuotient(
width_).squaredNorm() /
198 [
this](
const auto& variable) { return evaluate_on(variable); });
214 iteration_logger.template append<index_type>(
216 iteration_logger.template append<index_type>(
218 iteration_logger.template append<value_type>(
258 "Number of fireflies must be a positive integer.");
273 "Coefficient of the attractiveness must be a positive number.");
288 "Light absorption coefficient must be a positive number.");
303 "Coefficient of the random walk must be a positive number.");
316 "Maximum number of function evaluations must be a positive "
360 constexpr auto safe_limit = std::numeric_limits<value_type>::max();
432 std::random_device()()};
435 std::uniform_real_distribution<variable_scalar_type>
Class to write logs of iterations.
Class of tags of logs without memory management.
auto logger() const noexcept -> const num_collect::logging::logger &
Access to the logger.
index_type num_fireflies_
Number of fireflies.
index_type dim_
Number of dimension.
variable_type lower_
Element-wise lower limit.
auto evaluations() const noexcept -> index_type
Get the number of function evaluations.
index_type max_evaluations_
Maximum number of function evaluations.
variable_type opt_variable_
Current optimal variable.
void change_objective_function(const objective_function_type &obj_fun)
Change the objective function.
auto absorption_coeff(variable_scalar_type value) -> this_type &
Set the light absorption coefficient.
void init(const variable_type &lower, const variable_type &upper)
Initialize the algorithm.
auto is_stop_criteria_satisfied() const -> bool
Determine if stopping criteria of the algorithm are satisfied.
variable_type upper_
Element-wise upper limit.
void configure_iteration_logger(logging::iterations::iteration_logger< firefly_optimizer< ObjectiveFunction > > &iteration_logger) const
Configure an iteration logger.
auto num_fireflies(index_type value) -> this_type &
Set the number of fireflies.
auto max_evaluations(index_type value) -> this_type &
Set the maximum number of function evaluations.
variable_scalar_type attractiveness_coeff_
Coefficient of the attractiveness.
variable_scalar_type absorption_coeff_
Light absorption coefficient.
typename variable_type::Scalar variable_scalar_type
Type of scalars in variables.
std::mt19937 random_number_generator_type
Type of the random number generator.
util::vector< variable_type > variables_
Current variables. (Positions of fireflies.)
firefly_optimizer< ObjectiveFunction > this_type
This class.
random_number_generator_type random_number_generator_
Random number generator.
ObjectiveFunction objective_function_type
Type of the objective function.
variable_scalar_type random_coeff_
Coefficient of the random walk.
static auto correct_value_if_needed(value_type value) noexcept -> value_type
Correct function values if needed.
Eigen::VectorX< value_type > values_
Function values of the current variables.
static constexpr auto default_attractiveness_coeff
Default value of the coefficient of the attractiveness.
static constexpr index_type default_num_fireflies
Default value of the number of fireflies.
static constexpr auto default_absorption_coeff
Default value of the light absorption coefficient.
objective_function_type obj_fun_
Objective function.
auto opt_value() const -> const value_type &
Get current optimal value.
util::vector< variable_type > variable_changes_
Buffer of variable changes.
firefly_optimizer(const ObjectiveFunction &obj_fun=ObjectiveFunction())
Construct.
std::normal_distribution< variable_scalar_type > random_walk_distribution_
Distribution for random walk. (Standard normal distribution.)
index_type iterations_
Number of iterations.
auto evaluate_on(const variable_type &variable) -> value_type
Evaluate a function value.
value_type opt_value_
Current optimal value.
auto seed(random_number_generator_type::result_type value) -> this_type &
Change the seed of the random number generator.
typename objective_function_type::value_type value_type
Type of function values.
auto iterations() const noexcept -> index_type
Get the number of iterations.
variable_type width_
Element-wise width.
typename objective_function_type::variable_type variable_type
Type of variables.
static constexpr index_type default_max_evaluations
Default maximum number of function evaluations.
void iterate()
Iterate the algorithm once.
index_type evaluations_
Number of function evaluations.
std::uniform_real_distribution< variable_scalar_type > initial_distribution_
Distribution for the initial variables. (Uniform distribution from 0 to 1.)
auto opt_variable() const -> const variable_type &
Get current optimal variable.
auto attractiveness_coeff(variable_scalar_type value) -> this_type &
Set the coefficient of the attractiveness.
static constexpr auto default_random_coeff
Default value of the coefficient of the random walk.
auto random_coeff(variable_scalar_type value) -> this_type &
Set the coefficient of the random walk.
Class to perform optimization using firefly algorithm yang2009, yang2010.
optimizer_base(logging::log_tag_view tag)
Class of vectors wrapping std::vector class to use singed integers as indices.
Definition of index_type type.
Definition of isfinite function.
Definition of iteration_logger class.
Definition of log_tag_view class.
Definition of multi_variate_objective_function concept.
std::ptrdiff_t index_type
Type of indices in this library.
auto isfinite(const T &val) -> bool
Check whether a number is finite.
Namespace of optimization algorithms.
constexpr auto firefly_optimizer_tag
Tag of firefly_optimizer.
Definition of objective_function concept.
Definition of optimizer_base class.
Definition of NUM_COLLECT_PRECONDITION macro.
#define NUM_COLLECT_PRECONDITION(CONDITION,...)
Check whether a precondition is satisfied and throw an exception if not.
Definition of vector class.