numerical-collection-cpp 0.10.0
A collection of algorithms in numerical analysis implemented in C++
Loading...
Searching...
No Matches
firefly_optimizer.h
Go to the documentation of this file.
1/*
2 * Copyright 2025 MusicScience37 (Kenta Kabashima)
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
20#pragma once
21
22#include <algorithm>
23#include <cmath>
24#include <iterator>
25#include <limits>
26#include <random>
27#include <string_view>
28
29#include <Eigen/Core>
30
40
41namespace num_collect::opt {
42
44constexpr auto firefly_optimizer_tag =
45 logging::log_tag_view("num_collect::opt::firefly_optimizer");
46
53template <concepts::objective_function ObjectiveFunction>
55
62template <concepts::multi_variate_objective_function ObjectiveFunction>
63class firefly_optimizer<ObjectiveFunction>
64 : public optimizer_base<firefly_optimizer<ObjectiveFunction>> {
65public:
68
70 using objective_function_type = ObjectiveFunction;
71
73 using variable_type = typename objective_function_type::variable_type;
74
76 using variable_scalar_type = typename variable_type::Scalar;
77
79 using value_type = typename objective_function_type::value_type;
80
82 using random_number_generator_type = std::mt19937;
83
90 const ObjectiveFunction& obj_fun = ObjectiveFunction())
92
99 obj_fun_ = obj_fun;
100 }
101
108 void init(const variable_type& lower, const variable_type& upper) {
109 NUM_COLLECT_PRECONDITION(lower.size() == upper.size(), this->logger(),
110 "Lower and upper limits must have the same size.");
111 lower_ = lower;
112 upper_ = upper;
113 width_ = upper_ - lower_;
114 dim_ = lower_.size();
115
116 opt_value_ = std::numeric_limits<value_type>::max();
117 iterations_ = 0;
118 evaluations_ = 0;
119
120 variables_.clear();
121 variables_.reserve(num_fireflies_);
122 variable_type variable(dim_);
123 std::generate_n(std::back_inserter(variables_), num_fireflies_,
124 [this, &variable]() -> const variable_type& {
125 std::generate(variable.begin(), variable.end(), [this]() {
126 return initial_distribution_(random_number_generator_);
127 });
128 variable = lower_ + width_.cwiseProduct(variable);
129 return variable;
130 });
131
132 values_.resize(num_fireflies_);
133 std::transform(variables_.begin(), variables_.end(), values_.begin(),
134 [this](const auto& variable) { return evaluate_on(variable); });
135
136 // Allocate memory. (This value is not used.)
138 }
139
143 void iterate() {
144#pragma omp parallel
145 {
146 // Move to brighter fireflies.
147#pragma omp for
148 for (index_type i = 0; i < num_fireflies_; ++i) {
149 variable_changes_[i] = variable_type::Zero(dim_);
150 const variable_type& moved_variable = variables_[i];
151 const value_type moved_value = values_[i];
152 for (index_type j = 0; j < num_fireflies_; ++j) {
153 const value_type brighter_value = values_[j];
154 if (brighter_value >= moved_value) {
155 continue;
156 }
157 const variable_type& brighter_variable = variables_[j];
158 const variable_type diff =
159 brighter_variable - moved_variable;
160 const variable_scalar_type squared_distance =
161 diff.cwiseQuotient(width_).squaredNorm() /
162 static_cast<variable_scalar_type>(dim_);
163 using std::exp;
165 exp(-absorption_coeff_ * squared_distance) * diff;
166 }
167 }
168#pragma omp barrier
169#pragma omp for
170 for (index_type i = 0; i < num_fireflies_; ++i) {
172 }
173#pragma omp barrier
174
175 // Random walk.
176#pragma omp master
177 {
178 for (auto& variable : variables_) {
179 for (index_type d = 0; d < dim_; ++d) {
180 variable(d) += random_coeff_ *
183 width_(d);
184 }
185 }
186 }
187#pragma omp barrier
188
189 // Move to the feasible region.
190#pragma omp for
191 for (index_type i = 0; i < num_fireflies_; ++i) {
192 variables_[i] = variables_[i].cwiseMax(lower_).cwiseMin(upper_);
193 }
194 }
195
196 // Update function values.
197 std::transform(variables_.begin(), variables_.end(), values_.begin(),
198 [this](const auto& variable) { return evaluate_on(variable); });
199 ++iterations_;
200 }
201
205 [[nodiscard]] auto is_stop_criteria_satisfied() const -> bool {
207 }
208
213 firefly_optimizer<ObjectiveFunction>>& iteration_logger) const {
214 iteration_logger.template append<index_type>(
215 "Iter.", &this_type::iterations);
216 iteration_logger.template append<index_type>(
217 "Eval.", &this_type::evaluations);
218 iteration_logger.template append<value_type>(
219 "Value", &this_type::opt_value);
220 }
221
225 [[nodiscard]] auto opt_variable() const -> const variable_type& {
226 return opt_variable_;
227 }
228
232 [[nodiscard]] auto opt_value() const -> const value_type& {
233 return opt_value_;
234 }
235
239 [[nodiscard]] auto iterations() const noexcept -> index_type {
240 return iterations_;
241 }
242
246 [[nodiscard]] auto evaluations() const noexcept -> index_type {
247 return evaluations_;
248 }
249
257 NUM_COLLECT_PRECONDITION(value > 0, this->logger(),
258 "Number of fireflies must be a positive integer.");
259 num_fireflies_ = value;
260 return *this;
261 }
262
272 NUM_COLLECT_PRECONDITION(value > 0, this->logger(),
273 "Coefficient of the attractiveness must be a positive number.");
274 attractiveness_coeff_ = value;
275 return *this;
276 }
277
287 NUM_COLLECT_PRECONDITION(value > 0, this->logger(),
288 "Light absorption coefficient must be a positive number.");
289 absorption_coeff_ = value;
290 return *this;
291 }
292
302 NUM_COLLECT_PRECONDITION(value > 0, this->logger(),
303 "Coefficient of the random walk must be a positive number.");
304 random_coeff_ = value;
305 return *this;
306 }
307
315 NUM_COLLECT_PRECONDITION(value > 0, this->logger(),
316 "Maximum number of function evaluations must be a positive "
317 "integer.");
318 max_evaluations_ = value;
319 return *this;
320 }
321
328 auto seed(random_number_generator_type::result_type value) -> this_type& {
329 random_number_generator_.seed(value);
330 return *this;
331 }
332
333private:
340 [[nodiscard]] auto evaluate_on(const variable_type& variable)
341 -> value_type {
342 obj_fun_.evaluate_on(variable);
343 const value_type value = correct_value_if_needed(obj_fun_.value());
344 if (value < opt_value_) {
345 opt_variable_ = variable;
346 opt_value_ = value;
347 }
348 ++evaluations_;
349 return value;
350 }
351
358 [[nodiscard]] static auto correct_value_if_needed(value_type value) noexcept
359 -> value_type {
360 constexpr auto safe_limit = std::numeric_limits<value_type>::max();
361 if (!isfinite(value)) {
362 return safe_limit;
363 }
364 return value;
365 }
366
369
372
375
378
381
383 static constexpr index_type default_num_fireflies = 200;
384
387
389 static constexpr auto default_attractiveness_coeff =
390 static_cast<variable_scalar_type>(1);
391
398
400 static constexpr auto default_absorption_coeff =
401 static_cast<variable_scalar_type>(300);
402
409
411 static constexpr auto default_random_coeff =
412 static_cast<variable_scalar_type>(0.1);
413
420
423
426
428 Eigen::VectorX<value_type> values_;
429
433
435 std::uniform_real_distribution<variable_scalar_type>
437
439 std::normal_distribution<variable_scalar_type> random_walk_distribution_{};
440
443
445 value_type opt_value_{std::numeric_limits<value_type>::max()};
446
449
452
454 static constexpr index_type default_max_evaluations = 10000;
455
458};
459
460} // namespace num_collect::opt
Class of tags of logs without memory management.
auto logger() const noexcept -> const num_collect::logging::logger &
Access to the logger.
auto evaluations() const noexcept -> index_type
Get the number of function evaluations.
index_type max_evaluations_
Maximum number of function evaluations.
variable_type opt_variable_
Current optimal variable.
void change_objective_function(const objective_function_type &obj_fun)
Change the objective function.
auto absorption_coeff(variable_scalar_type value) -> this_type &
Set the light absorption coefficient.
void init(const variable_type &lower, const variable_type &upper)
Initialize the algorithm.
auto is_stop_criteria_satisfied() const -> bool
Determine if stopping criteria of the algorithm are satisfied.
void configure_iteration_logger(logging::iterations::iteration_logger< firefly_optimizer< ObjectiveFunction > > &iteration_logger) const
Configure an iteration logger.
auto num_fireflies(index_type value) -> this_type &
Set the number of fireflies.
auto max_evaluations(index_type value) -> this_type &
Set the maximum number of function evaluations.
variable_scalar_type attractiveness_coeff_
Coefficient of the attractiveness.
variable_scalar_type absorption_coeff_
Light absorption coefficient.
typename variable_type::Scalar variable_scalar_type
Type of scalars in variables.
std::mt19937 random_number_generator_type
Type of the random number generator.
util::vector< variable_type > variables_
Current variables. (Positions of fireflies.)
firefly_optimizer< ObjectiveFunction > this_type
This class.
random_number_generator_type random_number_generator_
Random number generator.
ObjectiveFunction objective_function_type
Type of the objective function.
variable_scalar_type random_coeff_
Coefficient of the random walk.
static auto correct_value_if_needed(value_type value) noexcept -> value_type
Correct function values if needed.
Eigen::VectorX< value_type > values_
Function values of the current variables.
static constexpr auto default_attractiveness_coeff
Default value of the coefficient of the attractiveness.
static constexpr index_type default_num_fireflies
Default value of the number of fireflies.
static constexpr auto default_absorption_coeff
Default value of the light absorption coefficient.
objective_function_type obj_fun_
Objective function.
auto opt_value() const -> const value_type &
Get current optimal value.
util::vector< variable_type > variable_changes_
Buffer of variable changes.
firefly_optimizer(const ObjectiveFunction &obj_fun=ObjectiveFunction())
Construct.
std::normal_distribution< variable_scalar_type > random_walk_distribution_
Distribution for random walk. (Standard normal distribution.)
auto evaluate_on(const variable_type &variable) -> value_type
Evaluate a function value.
auto seed(random_number_generator_type::result_type value) -> this_type &
Change the seed of the random number generator.
typename objective_function_type::value_type value_type
Type of function values.
auto iterations() const noexcept -> index_type
Get the number of iterations.
typename objective_function_type::variable_type variable_type
Type of variables.
static constexpr index_type default_max_evaluations
Default maximum number of function evaluations.
index_type evaluations_
Number of function evaluations.
std::uniform_real_distribution< variable_scalar_type > initial_distribution_
Distribution for the initial variables. (Uniform distribution from 0 to 1.)
auto opt_variable() const -> const variable_type &
Get current optimal variable.
auto attractiveness_coeff(variable_scalar_type value) -> this_type &
Set the coefficient of the attractiveness.
static constexpr auto default_random_coeff
Default value of the coefficient of the random walk.
auto random_coeff(variable_scalar_type value) -> this_type &
Set the coefficient of the random walk.
Class to perform optimization using firefly algorithm yang2009, yang2010.
Class of vectors wrapping std::vector class to use singed integers as indices.
Definition vector.h:37
Definition of index_type type.
Definition of isfinite function.
Definition of iteration_logger class.
Definition of log_tag_view class.
Definition of multi_variate_objective_function concept.
std::ptrdiff_t index_type
Type of indices in this library.
Definition index_type.h:33
auto isfinite(const T &val) -> bool
Check whether a number is finite.
Definition isfinite.h:39
Namespace of optimization algorithms.
constexpr auto firefly_optimizer_tag
Tag of firefly_optimizer.
Definition of objective_function concept.
Definition of optimizer_base class.
Definition of NUM_COLLECT_PRECONDITION macro.
#define NUM_COLLECT_PRECONDITION(CONDITION,...)
Check whether a precondition is satisfied and throw an exception if not.
Definition of vector class.