Bibliography

Bibliography#

[1]

A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[2]

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. arXiv, 1012.2599v1:1–49, 2010.

[3]

Lars Eldén. A Weighted Pseudoinverse, Generalized Singular Values, and Constrained Least Squares Problems. BIT Numerical Mathematics, 2:487–502, 1982. URL: http://link.springer.com/article/10.1007/BF01934412, doi:10.1007/BF01934412.

[4]

Etienne Forest and Ronald D. Ruth. Fourth-order symplectic integration. Physica D: Nonlinear Phenomena, 43(1):105–117, 1990.

[5]

Bengt Fornberg and Natasha Flyer. A Primer on Radial Basis Functions with Applications to the Geosciences. Society for Industrial and Applied Mathematics, 2015.

[6]

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 4th edition, 2013.

[7]

Kjell Gustafsson. Control Theoretic Techniques for Stepsize Selection in Explicit Runge-Kutta Methods. ACM Transactions on Mathematical Software, 7(4):533–554, 1991.

[8]

E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Springer-Verlag, 1993.

[9]

E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer-Verlag, 1991.

[10]

Per Christian Hansen. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems. Numerical Algorithms, 6:1–35, 1994. doi:10.1007/BF02149761.

[11]

John Bagterp Jorgensen, Morten Rode Kristensen, and Per Grove Thomsen. A Family of ESDIRK Integration Methods. arXiv, 1803.01613v1:1–22, 2018.

[12]

H. Kahan. Further remarks on reducing truncation errors. Communication of the ACM, 8(1):40, 1965.

[13]

Christopher A. Kennedy and Mark H. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Applied Numerical Mathematics, 2003.

[14]

Peter Knabner and Lutz Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer-Verlag, 2003.

[15]

Koichi Kubota and Masao Iri. Automatic Differentiation of Algorithms and Applications. Corona Publishing Co. Ltd., 1998.

[16]

D. P. Laurie. Calculation of gauss-kronrod quadrature rules. Mathematics of Computation, 66(219):1133 – 1145, 1997.

[17]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes : The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[18]

G. R. W. Quispel and D. I. McLaren. A new class of energy-preserving numerical integration methods. Journal of Physics A: Mathematical and Theoretical, 2008.

[19]

Joachim Rang. Improved traditional Rosenbrock-Wanner methods for stiff ODEs and DAEs. Journal of Computational and Applied Mathematics, 2015.

[20]

J. W. Ruge and K. Stüben. 4. Algebraic Multigrid, chapter 4, pages 73–130. Society for Industrial and Applied Mathematics, 1987. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4, doi:10.1137/1.9781611971057.ch4.

[21]

Michael Scheuerer. An alternative procedure for selecting a good value for the parameter c in RBF-interpolation. Advances in Computational Mathematics, 34:105–126, 2011.

[22]

Yaroslav D. Sergeyev. Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM Journal on Optimization, 16(3):910 – 937, 2006.

[23]

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process Optimization in the Bandit Settings: No Regret and Experimental Design. arXiv, 0912.3995v4:1–17, 2010.

[24]

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4:389–396, 1995. doi:https://doi.org/10.1007/BF02123482.