numerical-collection-cpp 0.10.0
A collection of algorithms in numerical analysis implemented in C++
Loading...
Searching...
No Matches
num_collect::ode::symplectic Namespace Reference

Namespace of symplectic integration. More...

Classes

class  leap_frog_formula
 Class of leap-frog formula. More...
 
class  symplectic_forest4_formula
 Class of fourth-order symplectic integration formula in [5]. More...
 

Typedefs

template<concepts::problem Problem>
using leap_frog_solver = simple_solver<leap_frog_formula<Problem>>
 Class of solver using leap-frog formula.
 
template<concepts::problem Problem>
using symplectic_forest4_solver
 Class of fourth-order symplectic integration formula in [5].
 

Detailed Description

Namespace of symplectic integration.

Typedef Documentation

◆ leap_frog_solver

template<concepts::problem Problem>
using num_collect::ode::symplectic::leap_frog_solver = simple_solver<leap_frog_formula<Problem>>

Class of solver using leap-frog formula.

This formula solves initial value problems of ODEs with following structure:

\[ \frac{d}{dt} \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{q} \end{pmatrix} = \begin{pmatrix} -\frac{\partial V}{\partial \boldsymbol{q}} \\ \frac{\partial T}{\partial \boldsymbol{p}} \end{pmatrix} \]

This formula assumes that the lower half of the solution vector is position \(\boldsymbol{q}\), and the upper half is moment \(\boldsymbol{p}\).

Note
For theoretical discussion, see [5].
Template Parameters
ProblemType of problem.

Definition at line 140 of file leap_frog_formula.h.

◆ symplectic_forest4_solver

template<concepts::problem Problem>
using num_collect::ode::symplectic::symplectic_forest4_solver
Initial value:
simple_solver<symplectic_forest4_formula<Problem>>

Class of fourth-order symplectic integration formula in [5].

This formula solves initial value problems of ODEs with following structure:

\[ \frac{d}{dt} \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{q} \end{pmatrix} = \begin{pmatrix} -\frac{\partial V}{\partial \boldsymbol{q}} \\ \frac{\partial T}{\partial \boldsymbol{p}} \end{pmatrix} \]

This formula assumes that the lower half of the solution vector is position \(\boldsymbol{q}\), and the upper half is moment \(\boldsymbol{p}\).

Template Parameters
ProblemType of problem.

Definition at line 180 of file symplectic_forest4_formula.h.